Austen Knapman Ltd FOR STEEL APPEAL

TVחNVW LOnaO\&d

> From its humble beginnings in Austen's garage in I98।, Austen Knapman Limited has grown into a highly respected family owned and run business.

Now a third-generation company started in Paignton, Devon a further branch opened in 2015 to cover Plymouth and Cornwall, which is based in Saltash, Cornwall.

Our main business is steel stockholding, we have I00's of tonnes of steel in stock, including steel beams, box sections, flats, angles, reinforcing products and palisade fencing.

Both branches have purpose-built trade counters, where we stock a large range of welding equipment, power tools, tube clamps, safety gear, industrial gases and many other products. We also keep a range of box profile steel roof sheets, galvanized corrugated sheets and Onduline to cover your roofing needs.

Due to the large variety of stock we hold we can offer a fast turnaround, whether we are supplying stock lengths or cutting your steel to size. Service is foremost in our minds and we do our best to accommodate your requirements. We also have the contacts to source any obscure items that you may need. No order too small or too large.

Our transport fleet consists of a variety of vehicles. With trucks ranging from 7.5 to 26 tonne, some fitted with hi-ab unload for sites where no lifting gear is available.Also 3.5 tonne pick-ups to get into the more "challenging" areas.

We look forward to being of service to you.

From The Team at Austen Knapman Limited.

F OR S T E E L A P P E A L
 Austen Knapman Limited

Head Office
Ash House
Blythe Way
Yalberton Industrial Estate
Paignton
Devon
TQ4 7QP

Tel: 01803664020

Email: sales@austenknapman.co.uk

Saltash Branch
Birch House
Forge Lane
Moorlands Trading Estate
Saltash
Cornwall
PLI 2 6LX

Tel: OI752847799
Email: saltashsales@austenknapman.com

PAGE		PAGE	
	ENERAL STEEL		HOLLOW STEEL
5	ANGLE	27	CIRCULAR
6-7	FLAT	28	SQUARE
8	SQUARE, ROUND	29	RECTANGULAR
	\& SPECIALS	30	ERW PRECISION WELDED STEELTUBE
9	VARIOUS SHEET		
$10-11$	HOT ROLLED SHEET \& PLATE	31	GALVANIZED/ BLACK PIPE
12	REINFORCING MESH		TUBECLAMPS
13	REINFORCING BAR	33-34	TUBECLAMP FITTINGS
14	SPACERS \& HYSTOOLS		TOOLS \& GAS
15	PALISADE FENCING	35	TOOLS \& EQUIPMENT
16	OPEN STEEL FLOORING	36	PAINT \& FIXINGS
17	WELDMESH \& EXPANDED WALKWAY MESH	37	GAS CYLINDERS
		38	TYPES \& USES OF GAS
18	GALVANIZING	ROOFING	
	STRUCTURAL STEEL	39	STEEL ROOFING
19	DEFINITIONS	40	COLOUR CHART
20-22	UNIVERSAL BEAMS	41	ONDULINE ROOFING
23	UNIVERSAL COLUMNS		\& CORRUGATED
24	PARALLEL FLANGE CHANNEL	42	ROOFING SCREWS
25-26	FABRICATION EXAMPLES		

All products shown in this catalogue are subject to change and not all items are kept in stock on the premises. The information presented in this catalogue is for your reference only and Austen Knapman Limited accept no liability for product specification changes or discrepancies in the details shown herein.

We may also be able to source related products that do not appear in this catalogue.

EQUAL ANGLE

Size (mm)	Kg / M
$13 \times 13 \times 3$	0.55
$20 \times 20 \times 3$	0.88
$25 \times 25 \times 3$	1.11
$25 \times 25 \times 5$	1.77
$30 \times 30 \times 3$	1.36
$30 \times 30 \times 5$	2.18
$40 \times 40 \times 3$	1.84
$40 \times 40 \times 5$	2.97
$40 \times 40 \times 6$	3.52
$45 \times 45 \times 5$	3.38
$50 \times 50 \times 3$	2.33
$50 \times 50 \times 5$	3.77
$50 \times 50 \times 6$	4.47
$50 \times 50 \times 8$	5.82
$60 \times 60 \times 6$	5.42
$60 \times 60 \times 8$	7.09
$60 \times 60 \times 10$	8.69
$70 \times 70 \times 6$	6.38
$70 \times 70 \times 8$	8.36
$70 \times 70 \times 10$	10.3
$75 \times 75 \times 6$	6.86
$75 \times 75 \times 8$	8.8
$75 \times 75 \times 10$	11

EQUAL ANGLE

Size (mm)	Kg / M
$80 \times 80 \times 6$	7.34
$80 \times 80 \times 8$	9.63
$80 \times 80 \times 10$	11.9
$90 \times 90 \times 6$	8.3
$90 \times 90 \times 8$	10.9
$90 \times 90 \times 10$	13.4
$100 \times 100 \times 8$	12.2
$100 \times 100 \times 10$	15
$100 \times 100 \times 12$	17.8
$100 \times 100 \times 15$	21.9
$120 \times 120 \times 8$	14.7
$120 \times 120 \times 10$	18.2
$120 \times 120 \times 12$	21.6
$120 \times 120 \times 15$	26.6
$150 \times 150 \times 10$	23
$150 \times 150 \times 12$	27
$150 \times 150 \times 15$	33.8
$150 \times 150 \times 18$	40.1
$200 \times 200 \times 12$	36.74
$200 \times 200 \times 16$	48.5
$200 \times 200 \times 18$	54.2
$200 \times 200 \times 20$	59.9
$200 \times 200 \times 24$	71.1

UNEQUAL ANGLE

Size (mm)	Kg / M
$40 \times 25 \times 5$	2.37
$50 \times 40 \times 5$	3.37
$60 \times 30 \times 5$	3.37
$65 \times 50 \times 6$	5.16
$75 \times 50 \times 6$	5.65
$75 \times 50 \times 8$	7.39
$80 \times 60 \times 6$	6.37
$100 \times 65 \times 7$	8.77
$100 \times 65 \times 8$	9.94
$100 \times 65 \times 10$	12.3
$100 \times 75 \times 8$	10.6
$100 \times 75 \times 10$	13
$125 \times 75 \times 8$	12.2
$125 \times 75 \times 10$	15
$125 \times 75 \times 12$	17.8
$150 \times 75 \times 10$	17
$150 \times 75 \times 12$	20.2
$150 \times 75 \times 15$	24.8
$150 \times 90 \times 10$	18.2
$150 \times 90 \times 12$	21.6
$200 \times 100 \times 10$	23
$200 \times 100 \times 12$	27.3
$200 \times 100 \times 15$	33.7
$200 \times 150 \times 12$	32
$200 \times 150 \times 15$	39.6
$200 \times 150 \times 18$	47.1

Size (mm)	Kg / M
10×3	0.26
13×3	0.33
16×3	0.39
20×3	0.49
25×3	0.63
30×3	0.75
40×3	0.95
50×3	1.25
60×3	1.44
65×3	1.53
80×3	1.89
100×3	2.36
130×3	3.06
150×3	3.54

Size (mm)	
Kg / M	
13×5	0.5 I
16×5	0.63
20×5	0.79
25×5	0.98
30×5	I .18
40×5	1.57
50×5	1.96
60×5	2.36
70×5	2.76
80×5	3.14
90×5	3.53
100×5	3.93
130×5	5.1 I
150×5	5.89

Size (mm)	
$16 \mathrm{Kg} / \mathrm{M}$	
20×6	0.75
25×6	1.18
30×6	I .4 I
40×6	I .88
50×6	2.36
60×6	2.83
65×6	3.06
70×6	3.3 I
75×6	3.55
80×6	3.77
90×6	4.24
100×6	4.7 I
120×6	5.66
130×6	6.12
150×6	7.09
$\mathrm{I} 80 \times 6$	8.48
200×6	9.42
220×6	10.36
250×6	$I I .78$
300×6	14.13

Size (mm)	Kg / M
20×8	I .26
25×8	I .57
30×8	1.88
40×8	2.5 I
50×8	3.14
60×8	3.77
65×8	4.08
70×8	4.39
75×8	4.7 I
80×8	5.02
90×8	5.65
100×8	6.28
120×8	7.54
130×8	8.16
150×8	9.42
180×8	$\mathrm{II.3I}$
200×8	12.59
220×8	13.82
250×8	15.69
300×8	18.84

Size (mm)	
20×10	Kg / M
25×10	1.96
30×10	2.36
40×10	3.14
50×10	3.93
60×10	4.7 I
65×10	5.11
70×10	5.49
75×10	5.89
80×10	6.28
90×10	7.07
100×10	7.85
120×10	9.42
130×10	10.21
150×10	11.78
160×10	12.56
180×10	14.13
200×10	15.69
220×10	17.27
250×10	19.59
275×10	21.59
300×10	23.55
350×10	27.48
400×10	31.41

| $\|c\|$ Size |
| :---: | :---: |
| (mm) | Kg/M

Size (mm)	Kg / M
40×20	6.28
50×20	7.85
60×20	9.42
65×20	10.2 I
70×20	10.99
75×20	11.8 I
80×20	12.56
100×20	15.72
120×20	18.84
130×20	20.4 I
150×20	23.55
180×20	28.26
200×20	31.4 I
220×20	34.54
250×20	39.25
300×20	47.15
350×20	54.95
400×20	62.8 I

Size (mm)	
40×25	Kg / M
50×25	9.81
60×25	11.78
65×25	12.76
70×25	13.74
75×25	14.7 I
80×25	15.7 I
90×25	17.68
100×25	19.63
120×25	23.55
130×25	25.5 I
140×25	27.48
150×25	29.44
180×25	35.33
200×25	39.25
220×25	43.18
250×25	59.97
300×25	58.88
400×25	78.5 I

Size (mm)	Kg / M
40×30	9.42
45×30	10.65
50×30	$\mathrm{II.78}$
60×30	14.13
65×30	15.3 I
70×30	16.49
75×30	17.7 I
80×30	18.84
90×30	21.22
100×30	23.55
120×30	28.35
130×30	30.62
150×30	35.33
180×30	42.39
200×30	47.1 I
220×30	51.8 I
250×30	58.88
300×30	70.65
350×30	82.43
400×30	94.2 I

Size (mm)	Kg / M	150×15	17.66
40×15	4.71	180×15	21.22
50×15	5.89	200×15	23.55
60×15	7.07	220×15	25.91
80×15	9.42	250×15	29.44
100×15	11.78	300×15	35.33
120×15	14.09	350×15	41.25
130×15	15.31	400×15	47.09

$\|c\|$Size (mm)	Kg / M
50×40	15.7 I
60×40	18.84
65×40	20.4 I
70×40	21.96
80×40	25.12
100×40	31.4 I
150×40	47.1 I
180×40	56.52

Size (mm)	
$10 \mathrm{Kg} / \mathrm{M}$	
100×50	39.25
150×50	58.88
200×50	78.5 I

SQUARE SOLID		ROUND SOLID	
$\begin{gathered} \text { Size } \\ (\mathrm{mm}) \end{gathered}$	Kg/M	$\begin{gathered} \text { Size } \\ (\mathrm{mm}) \end{gathered}$	Kg/M
10	0.79	6	0.22
12	1.13	8	0.39
16	2.01	10	0.62
20	3.14	12	0.89
25	4.91	16	1.58
30	7.07	20	2.47
35	9.62	22	2.98
40	12.6	25	3.85
45	15.9	30	5.55
50	19.62	32	6.31
60	28.4	35	7.55
65	33.16	40	9.86
70	39.1	50	15.41

HALF ROUND SQUARE EDGE

Size (mm)	
$40 \times \mathrm{I} 2 \times 6$	3.18
$51 \times 13 \times 6$	4.17

TEE SECTION

Size (mm)	
$40 \times 40 \times 5$	Kg / M
$50 \times 50 \times 6$	4.96

BRIGHT CARBON ROUND

$\begin{gathered} \text { Size } \\ \text { (inches) } \end{gathered}$	$\begin{aligned} & \text { Size } \\ & (\mathrm{mm}) \end{aligned}$	Kg/M
	3	0.06
1/8		0.06
3/16		0.14
1/4		0.25
5/16		0.39
	8	0.39
3/8		0.56
7/16		0.76
1/2		0.99
5/8		1.55
3/4		2.23
	20	2.46
7/8		3.04
15/16		3.49
	25	3.85
I		3.97
$11 / 8$		5.02
	30	5.54
$11 / 4$		6.2
$11 / 2$		8.93
2		15.9
$21 / 2$		24.8

Various sizes, sections and grades are available to order.

GALVANIZED SHEET

Thickness (mm)	Size (mm)	Weight Kg/m2
0.8	2000×1000	6.28
	2500×1250	
0.9	2000×1000	7.07
	2500×1250	
1.0	2000×1000	7.85
	2500×1250	
1.2	2000×1000	9.42
	2500×1250	
1.5	2000×1000	11.78
	2500×1250	
1.6	2000×1000	12.56
	2500×1250	
2.0	2000×1000	15.7
	2500×1250	
3.0	2000×1000	23.55
	2500×1250	

DURBAR SHEET

Thickness (mm)	Size (mm)	Weight Kg/m2
3	2000×1000	26.19
	2500×1250	
4.5	2000×1000	37.97
	2500×1250	
6	2000×1000	49.74
	2500×1250	
8	2000×1000	65.44
	2500×1250	
10	2000×1000	81.14
	2500×1250	
12.5	2000×1000	100.71
	2500×1250	

ZINTEC SHEET

Thickness (mm)	Size (mm)	Weight Kg/m2
0.8	2500×1250	6.28
0.9	2500×1250	7.07
1	2500×1250	7.85
1.2	2500×1250	9.42
1.5	2500×1250	11.78
2	2500×1250	15.7
2.5	2500×1250	19.62
3	2500×1250	23.55

COLD REDUCED SHEET

Thickness (mm)	Size (mm)	Weight Kg/m2
0.8	2000×1000	6.28
	2500×1250	
1.0	2000×1000	7.85
	2500×1250	
1.2	2000×1000	9.42
	2500×1250	
1.6	2000×1000	12.56
	2500×1250	
	3000×1500	
2	2000×1000	15.7
	2500×1250	
	3000×1500	
2.5	2000×1000	19.63
	2500×1250	
	3000×1500	
3	2000×1000	23.55
	2500×1250	
	3000×1500	

Thickness (mm)	$\begin{gathered} \text { Size } \\ (\mathrm{mm}) \end{gathered}$	Weight $\mathrm{Kg} / \mathrm{m} 2$
1.6	2000x1000	12.56
	2500xI250	
	3000xI500	
2.0	2000x1000	15.7
	2500x1250	
	3000x1500	
2.5	2000x1000	19.63
	2500x1250	
3	2000x1000	23.55
	2500x1250	
	3000x1500	
4	2000x1000	31.4
	2500×1250	
	3000x1500	
5	2000x1000	39.25
	2500x1250	
	3000x1500	
6	2000x1000	47.1
	2500x1250	
	3000x1500	
8	2000x1000	62.8
	2500x1250	
	3000×1500	
10	2000×1000	78.5
	2500×1250	
	3000x1500	
12	2000x1000	98.12
	2500x1250	
	3000x1500	
15	2000x1000	117.75
	2500x1250	
	3000x1500	

Thickness (mm)	$\begin{gathered} \text { Size } \\ (\mathrm{mm}) \end{gathered}$	Weight $\mathrm{Kg} / \mathrm{m} 2$ Kg/m2
20	2000x1000	157
	2500xI250	
	3000xI500	
25	2000x1000	196.25
	2500xI250	
	3000xI500	
30	2000x1000	235.5
	2500x1250	
	3000xI500	
35	2000x1000	274.8
	2500x1250	
	3000xI500	
40	2000x1000	314
	2500xI250	
	3000xI500	
45	2000x1000	353.3
	2500x1250	
	3000xI500	
50	2000x1000	392.5
	2500x1250	
	3000x1500	
55	2000x1000	431.8
	2500×1250	
	3000xI500	
60	2000x1000	471
	2500xI250	
	3000x1500	
65	2000x1000	510.3
	2500xI250	
	3000xI500	

Thickness (mm)	$\begin{gathered} \text { Size } \\ (\mathrm{mm}) \end{gathered}$	Weight Kg/m2
70	2000x1000	549.5
	2500x1250	
	3000xI500	
75	2000x1000	588.8
	2500x1250	
	3000x1500	
80	2000x1000	628
	2500x1250	
	4000×2000	
85	2000x1000	667.3
	2500x1250	
	4000×2000	
90	2000x1000	706.5
	2500×1250	
	4000×2000	
95	2000x1000	745.8
	2500xI250	
	4000×2000	
100	2000x1000	785
	2500x1250	
	4000×2000	
120	2500×1250	942
	4000×2000	
130	2500×1250	1020
	4000×2000	
150	2500×1250	II77.5

Mesh Reference	Mesh Size Nominal Pitch of main mm	Diameter cross mm	of Wires main cross		Nominal Weight per m2	Sheets per pack	Weight per seet
A393	200	200	10	10	6.16	20	70.96
A393S*	200	200	10	10	6.16	20	44.35
A252	200	200	8	8	3.95	30	45.5
AI93	200	200	7	7	3.02	40	34.79
AI42	200	200	6	6	2.22	50	25.57
AI42S*	200	200	6	6	2.22	50	15.98
BII3I	200	200	12	8	10.9		125.57
B785	200	200	10	8	8.14		93.57
B503	100	200	8	8	5.93		68.31
D49	100	100	2.5	2.5	0.77		8.87

Standard sheet size $4.8 \mathrm{~m} \times 2.4 \mathrm{~m}$ (A sizes have Flying Ends)
Coverage area approx. $10 \mathrm{sq} / \mathrm{mtrs}$.
*AI42S \& A393S 3.6mx2.0m Coverage area approx. $7.2 \mathrm{sq} / \mathrm{mtrs}$.

FLYING ENDED MESH LAYOUT

STANDARD MESH LAYOUT

HIGH YIELD REINFORCING BAR

Diameter (mm)	Kg / M
8	0.39
10	0.62
12	0.89
16	1.58
20	2.47
25	3.86
32	6.31
40	9.87

Standard 6m lengths.
Can be cut and bent as per schedule if required.
(Lengh A

Rebar and Mesh spacers are used to keep steel a certain distance away from the edge of the concrete once it has been poured.

Below are a few examples of what we keep in stock and their usage.

GRADE PLATE SPACERS - STYROFIX

A lightweight option for the spacing of fabric at the bottom of slabs.Their wide base gives extra stability and are ideal for use on damp proof membrane. Fixes to the mesh by clipping in, can be
 used vertically or horizontally.
Usage: 4 spacers per m2.

CONCRETE SPACERS - TUFBLOCK

A more flexible spacer for the vertical and horizontal spacing of reinforcement bar providing maximum stability under normal loading conditions.Tied to the mesh by tie wire through the hole in the middle.
Usage: 4 spacers per m2.

TWO METRE CONTINUOUS HYSTOOLS - CHAIRS

Two metre long continuous hystools are particularly useful for supporting single layers and separating top and bottom layers of mesh in slab construction.
Usage: 5 per sheet

DOUBLE LOOP TIES \& TYING TOOL (wire twister)
We also stock 16 g TieWire in 2 kg or 10 kg rolls.

Below is an example layout for a double layer mesh system:
To Calculate: overall slab depth - top and bottom cover - total thickness of mesh sheets = spacing required between the two sheets.

Palisade fencing is a high security fencing system that comes in an easy to assemble kit form of vertical steel pales and horizontal rails that bolt together into panels that mount onto RSJ posts. This allows for the panels to easily follow the contours of the ground where it is erected.

Palisade fencing is supplied with concrete in posts or bolt down posts. The standard finish is a galvanized coating to BS EN ISO 1461:2009 to give a long lasting, corrosion resitant coating. Palisade fencing can also be supplied powder coated to a RAL colour of your choice.

STANDARD PANELS

- 6 metres $\times I$ metre
- The bearer bars run the length of the panel
- Flooring can also be cut to size and shaped to suit your individual requirements
- Galvanized or self colour

BAR ARRANGEMENTS:

TypeWIOO-4I/I00

TypeW50-4I/50

Type NIOO-30/I00

Type N50-30/50

OPEN MESH FLOORING

$\begin{gathered} \text { Sect } \\ (\mathrm{mm}) \end{gathered}$	41/100 kg/m	$\begin{aligned} & 4 \mathrm{l} / 50 \\ & \mathrm{~kg} / \mathrm{m} \end{aligned}$	31/100 kg/m	$\begin{aligned} & 30 / 50 \\ & \mathrm{~kg} / \mathrm{m} \end{aligned}$
20x3	13.44	15.25	17.70	19.50
25x3	16.39	18.19	21.64	23.44
30x3	19.34	21.14	25.73	27.54
40×3	25.25	27.05	33.61	35.40
20x5	21.31	23.11	28.36	30.16
25×5	26.22	28.03	35.08	36.88
30×5	31.15	32.95	41.63	43.44
35×5	36.06	37.87	48.36	50.16
40×5	40.98	42.78	55.08	56.88
45×5	45.90	47.70	61.64	63.44
50x5	50.82	52.62	68.36	70.16
55×5	55.74	57.37	75.08	76.88
60×5	60.65	62.29	81.63	83.44

FIXING CLIPS: Galvanized For typeW (4 Imm between bars) For type N (30 mm between bars)

Specification (Mesh x Wire dia)	$\begin{gathered} \text { Sheet Size } \\ 4^{\prime} \times 8^{\prime} \quad 6^{\prime} \times 12^{\prime} \end{gathered}$		
\|"x	"x12g	9.3	20.9
\|"x	"x10g	14.1	31.9
2 "x2"x12g	4.8	10.8	
2 " $\times 2$ " $\times 10 \mathrm{~g}$	7.1	15.9	
2"x2"x8g	12.2	27.4	
3 "x3"x6g	11.5	25.9	
$3 " \times 3$ " $\times 8 \mathrm{~g}$	8.0	18.0	
$3 " \times 3$ "x10g	4.8	10.8	

Welded meshes are available either self-colour or galvanized finish.

Weights quoted are approximate.

Other sizes are available.

Gauge	
12	mm
10	3.5
8	4.0
6	4.88

EXPANDED METAL WALKWAY MESH:

Available in steel, aluminium and stainless steel.

FIXING CLIPS: Galvanized
For use with Ref. 4896 - Code No. 020217 For use with Ref. 2496 consisting of Hook, Bolt and Clamp.

Plain - Code No. 0201943
Galvanized - Code No. 0202943

Code No. 020217 (LRD-I7A)
Not for use with 2496
Use hook-bolts

Ref No.	Type	Nom size of Aperture (mm) LW x SW	Nom size of Stands (mm) W T	Nominal Overall Thickness (mm)	Approx Weight Uncoated (kg/m2)	$\begin{aligned} & \text { Standard } \\ & (\mathrm{mm}) \\ & \mathrm{LW} \times \mathrm{SW} \end{aligned}$
4896	Plain	79.4×23.8	6.354 .70	13.50	13.82	2440×1220
2496	Plain	44.5×12.70	6.104 .70	12.70	17.69	2440×1220

Once your item is manufactured we offer a galvanizing service, providing your items with a long life and relatively maintenance free finish. Hot dip galvanizing has long been seen as the most environmentally friendly process available to prevent corrosion.

THE GALVANIZING PROCESS

The process consisits of three distinct phases:

Pre-Treatment

Pre-Treatment consists of four seperate stages:
Inspection - Items are inspected to ensure they are safe and suitable to galvanize.This may involve checking whether they are adequately vented. Surfaces are checked for signs of contamination with paint, grease etc. as these will not be removed in the process and would cause the process to fail.
Degreasing - Steel is immersed in a degreasing solution that removes light oil contamination.
Pickling - Acid strips the steel surface back to clean base steel.
Fluxing -A flux solution is applied to the steel to assist with the galvanizing reaction.

Galvanizing

Material is loaded on to jigs before being immersed in molten zinc at a temperature of around 450 degrees until the temperature of the work is the same as the zinc. During this process, the molten zinc reacts with the surface of the steel to form a series of zinc/ iron alloys.
As work is removed, the zinc on its surface will begin to solidify and, as this happens, excess zinc is removed to ensure a smooth finish. Work is then usually transferred to a quench tank, where it is cooled to allow handling.

Inspection

The galvanized steel is first visually inspected for its appearance and conformity to standard. Batches may then be non-destructively tested for coating thickness and uniformity.

UNIVERSAL BEAMS (UB) \& UNIVERSAL COLUMNS (UC)

Also known as an \mathbf{H} or I section beams, or the older term RSJ's
The first dimension is the height; the second dimension is the width, and the third dimension is the kilograms per metre weight.

As the weight of these structural steels increase more material is added to the outside of the bar.This means actual height and width may differ from the size of the steel that is listed, see tables overleaf for actual dimensions.

Beams and columns are steel grade S 355 , and can be supplied as a bare metal finish, shotblasted and primer painted or galvanized depending on your specifications.

PARALLEL FLANGE CHANNEL (PFC)

Also known as a C shaped beam, or the older term RSC or rolled steel channel.

RETAINING SLEEPER WALLS

As well as being used structurally these steels can also be used for making retaining walls with wooden sleepers. The most used sizes for this purpose are:
$127 \times 76 \times 13$ Universal Beam, internal measurement IIOmm approx.
$125 \times 65 \times 15$ Parallel Flange Channel, internal measurement 105 mm approx.
$152 \times 152 \times 23$ Universal Column, internal measurement 135 mm approx.
$150 \times 75 \times 18$ Parallel Flange Channel, internal measurement I 30 mm approx.
The above is a guide, different sizes maybe recommended by your structural engineer.

Size (mm)	Kg/M	Depth h (mm)	Width b (mm)	Web s (mm)	Flange t (mm)	Root Radius r
$127 \times 76 \times 13$	13	127	76	4	7.6	7.6
$152 \times 89 \times 16$	16	152.4	88.7	4.5	7.7	7.6
$178 \times 102 \times 19$	19	177.8	101.2	4.8	7.9	7.6
$203 \times 102 \times 23$	23	203.2	101.8	5.4	9.3	7.6
$203 \times 133 \times 25$	25	203.2	133.2	5.7	7.8	7.6
$203 \times 133 \times 30$	30	206.8	133.9	6.4	9.6	7.6
$254 \times 102 \times 22$	22	254	101.6	5.7	6.8	7.6
$254 \times 102 \times 25$	25	257.2	101.9	6	8.4	7.6
$254 \times 102 \times 28$	28	260.4	102.2	6.3	10	7.6
$254 \times 146 \times 31$	31	$25 I .4$	146.1	6	8.6	7.6
$254 \times 146 \times 37$	37	256	146.4	6.3	10.9	7.6
$254 \times 146 \times 43$	43	259.6	147.3	7.2	12.7	7.6
$305 \times 102 \times 25$	25	305.1	101.6	5.8	7	7.6
$305 \times 102 \times 28$	28	308.7	101.8	6	8.8	7.6
$305 \times 102 \times 33$	33	312.7	102.4	6.6	10.8	7.6
$305 \times 127 \times 37$	37	304.4	123.4	7.1	10.7	8.9
$305 \times 127 \times 42$	42	307.2	124.3	8	12.1	8.9
$305 \times 127 \times 48$	48	311	125.3	9	14	8.9
$305 \times 165 \times 40$	40	303.4	165	6	10.2	8.9
$305 \times 165 \times 46$	46	306.6	165.7	6.7	11.8	8.9
$305 \times 165 \times 54$	54	310.4	166.9	7.9	13.7	8.9

Size (mm)	Kg/M	$\begin{gathered} \text { Depth } \mathrm{h} \\ (\mathrm{~mm}) \end{gathered}$	Width b (mm)	Web s (mm)	Flange t (mm)	Root Radius r
356x127x33	33	349	125.4	6	8.5	10.2
$356 \times 127 \times 39$	39	353.4	126	6.6	10.7	10.2
$356 \times 17 \times 45$	45	351.4	171.1	7	9.7	10.2
$356 \times 171 \times 51$	51	355	171.5	7.4	11.5	10.2
$356 \times 171 \times 57$	57	358	172.2	8.1	13	10.2
$356 \times 171 \times 67$	67	363.4	173.2	9.1	15.7	10.2
$406 \times 140 \times 39$	39	398	141.8	6.4	8.6	10.2
$406 \times 140 \times 46$	46	403.2	142.2	6.8	11.2	10.2
$406 \times 178 \times 54$	54	402.6	177.7	7.7	10.9	10.2
$406 \times 178 \times 60$	60	406.4	177.9	7.9	12.8	10.2
$406 \times 178 \times 67$	67	409.4	178.8	8.8	14.3	10.2
$406 \times 178 \times 74$	74	412.8	179.5	9.5	16	10.2
$457 \times 152 \times 52$	52	449.8	152.4	7.6	10.9	10.2
$457 \times 152 \times 60$	60	454.6	152.9	8.1	13.3	10.2
$457 \times 152 \times 67$	67	458	153.8	9	15	10.2
$457 \times 152 \times 74$	74	462	154.4	9.6	17	10.2
$457 \times 152 \times 82$	82	465.8	155.3	10.5	18.9	10.2
$457 \times 191 \times 67$	67	453.4	189.9	8.5	12.7	10.2
$457 \times 191 \times 74$	74	457	190.4	9	14.5	10.2
$457 \times 191 \times 82$	82	460	191.3	9.9	16	10.2
$457 \times 191 \times 89$	89	463.4	191.9	10.5	17.7	10.2
$457 \times 191 \times 98$	98	467.2	192.8	11.4	19.6	10.2
$533 \times 210 \times 82$	82	528.3	208.8	9.6	13.2	12.7
$533 \times 210 \times 92$	92	533.1	209.3	10.1	15.6	12.7
$533 \times 210 \times 101$	101	536.7	210	10.8	17.4	12.7
$533 \times 210 \times 109$	109	539.5	210.8	11.6	18.8	12.7
$533 \times 210 \times 122$	122	544.5	211.9	12.7	21.3	12.7

Size (mm)	Kg/M	Depth h (mm)	Width b (mm)	Webs (mm)	Flange t (mm)	Root Radius r
$610 \times 229 \times 101$	101	602.6	227.6	10.5	14.8	12.7
$610 \times 229 \times 113$	113	607.6	228.2	11.1	17.3	12.7
$610 \times 229 \times 125$	125	612.2	229	11.9	19.6	12.7
$610 \times 229 \times 140$	140	617.2	230.2	13.1	22.1	12.7
$610 \times 305 \times 149$	149	612.4	304.8	11.8	19.7	16.5
$610 \times 305 \times 179$	179	620.2	307.1	14.1	23.6	16.5
$610 \times 305 \times 238$	238	635.8	311.4	18.4	21.4	16.5
$686 \times 254 \times 125$	125	677.9	253	11.7	16.2	15.2
$686 \times 254 \times 140$	140	683.5	253.7	12.4	19	15.2
$686 \times 254 \times 152$	152	687.5	254.5	13.2	21	15.2
$686 \times 254 \times 170$	170	962.9	255.8	14.5	23.7	15.2
762x267x147	147	754	265.2	12.8	17.5	16.5
$762 \times 267 \times 173$	173	762.2	266.7	14.3	21.6	16.5
$762 \times 267 \times 197$	197	769.8	268	15.6	25.4	16.5
$838 \times 292 \times 176$	176	834.9	291.7	14	18.8	17.8
$838 \times 292 \times 194$	194	840.7	292.4	14.7	21.7	17.8
$838 \times 292 \times 226$	226	850.9	293.8	16.1	26.8	17.8
$914 \times 305 \times 201$	201	903	303.3	15.1	20.2	19.1
$914 \times 305 \times 224$	224	910.4	304.1	15.9	23.9	19.1
$914 \times 305 \times 253$	253	918.4	305.5	17.3	27.9	19.1
$914 \times 305 \times 289$	289	926.8	307.7	19.5	32	19.1
$914 \times 419 \times 343$	343	911.8	418.5	19.4	32	24.1
$914 \times 419 \times 388$	388	921	420.5	21.4	36.6	24.1

Size (mm)	Kg/M	Depth h (mm)	Width b (mm)	Webs (mm)	Flange t (mm)	Root Radius r
$152 \times 152 \times 23$	23	152.4	152.2	5.8	6.8	7.6
$152 \times 152 \times 30$	30	157.6	152.9	6.5	9.4	7.6
$152 \times 152 \times 37$	37	161.8	154.4	8	11.5	7.6
$203 \times 203 \times 46$	46.1	203.2	203.6	7.2	11	10.2
$203 \times 203 \times 52$	52	206.2	204.3	7.9	12.5	10.2
$203 \times 203 \times 60$	60	209.6	205.8	9.4	14.2	10.2
$203 \times 203 \times 71$	71	215.8	206.4	10	17.3	10.2
$203 \times 203 \times 76$	86.1	222.2	209.1	12.7	20.5	10.2
$254 \times 254 \times 73$	73.1	254.1	254.6	8.6	14.2	12.7
$254 \times 254 \times 89$	88.9	260.3	256.3	10.3	17.3	12.7
$254 \times 254 \times 107$	107.1	266.7	258.8	12.8	20.5	12.7
$254 \times 254 \times 132$	132	276.3	261.3	15.3	25.3	12.7
$254 \times 254 \times 167$	167.1	289.1	265.2	19.2	31.7	12.7
$305 \times 305 \times 97$	96.9	307.9	305.3	9.9	15.4	15.2
$305 \times 305 \times 118$	117.9	314.5	307.4	12	18.7	15.2
$305 \times 305 \times 137$	136.9	320.5	309.2	13.8	21.7	15.2
$305 \times 305 \times 158$	I 58.1	327.1	311.2	15.8	25	15.2
$305 \times 305 \times 198$	I98.1	339.9	314.5	19.1	31.4	15.2
$305 \times 305 \times 240$	240	352.5	318.4	23	37.7	15.2
$305 \times 305 \times 283$	282.9	365.3	322.2	26.8	44.1	15.2
$356 \times 368 \times 129$	129	355.6	368.5	10.4	17.5	15.2
$356 \times 368 \times 153$	152.9	362	370.5	12.3	20.7	15.2
$356 \times 368 \times 177$	177	368.2	372.6	14.4	23.8	15.2
$356 \times 368 \times 202$	201.9	374.6	374.7	16.5	27	15.2

Size (mm)	Kg / M						
$100 \times 50 \times 10$	10.2	100	50	5	8.5	9	65
$125 \times 65 \times 15$	14.8	125	65	5.5	9.5	12	82
$150 \times 75 \times 18$	17.9	150	75	5.5	10	12	106
$150 \times 90 \times 24$	23.9	150	90	6.5	12	12	102
$180 \times 75 \times 20$	20.3	180	75	6	10.5	12	135
$180 \times 90 \times 26$	26.1	180	90	6.5	12.5	12	131
$200 \times 75 \times 23$	23.4	200	75	6	12.5	12	151
$200 \times 90 \times 30$	29.7	200	90	7	14	12	148
$230 \times 75 \times 26$	25.7	120	75	6.5	12.5	12	181
$230 \times 90 \times 32$	32.2	230	90	7.5	14	12	178
$260 \times 75 \times 28$	27.6	260	75	7	12	12	212
$260 \times 90 \times 35$	34.8	260	90	8	14	12	208
$300 \times 90 \times 4 \mathrm{I}$	41.4	300	90	9	15.5	12	245
$300 \times 100 \times 46$	45.5	300	100	9	16.5	15	237
$380 \times 100 \times 54$	54	380	100	9.5	17.5	15	315
$430 \times 100 \times 64$	64.4	380	100	11	19	15	362

ROLLED STEEL CHANNEL

Size (mm)	
$40 \times 20 \times 5$	2.87
$51 \times 25 \times 5$	3.86
$51 \times 38 \times 5$	5.59
$76 \times 38 \times 7$	6.9

THE FOLLOWING ARE COMMON EXAMPLES OF FABRICATION DETAILSWE CAN PROVIDE.

FABRICATION DETAIL: A
BOXWELDEDTO BASE PLATE.
N.B. Box may be positioned
anywhere on the base plate.

FABRICATION DETAIL: B

BEAMTO BEAM CONNECTION. PLATED ANDWELDED.

FABRICATION DETAIL: C BEAMTO BEAM CONNECTION PLATED AND BOLTED. CAN BE LEVELTOP OR BOTTOM OR FLUSH DEPENDING ON BEAM SIZE.

FABRICATION DETAIL: D
SPACE BOLT CONNECTION

FABRICATION DETAIL: E

 SPLICE CONNECTION. 2 END PLATES BOLTED.

FABRICATION DETAIL: G SPLICE CONNECTION PLATED.

PLATES AND DRILLING OPTIONS

FABRICATION DETAIL: F

SPLICE CONNECTIONWITH TOPAND/OR BOTTOM PLATE -WELDED.

POST SHOES

Size (mm)	
$2 \mathrm{Kg} .3 \times 3$	I .43
26.9×3	1.87
33.7×2.5	1.99
33.7×3	2.4 I
33.7×4	2.93
42.4×2.5	2.55
42.4×3	3.09
42.4×4	3.79
48.3×3	3.56
48.3×4	4.37
48.3×5	5.34
60.3×3	4.5 I
60.3×4	5.55
60.3×5	6.82
76.1×3	5.75
76.1×4	7.11
76.1×5	8.77
88.9×3	6.76
88.9×4	8.38
88.9×5	10.3
114.3×3.5	9.83
114.3×5	13.5
114.3×6	16.8
139.7×5	16.6
139.7×6	20.7
139.7×8	26
139.7×10	32
168.3×5	20.1
168.3×6	25.2
168.3×8	31.6
168.3×10	39

Size (mm)	Kg / M
193.7×5	23.3
193.7×6	29.1
193.7×8	36.6
193.7×10	45.3
219.1×5	26.4
219.1×6	33.1
219.1×8	41.6
219.1×10	51.6
219.1×12.5	63.7
273.0×6	41.4
273.0×8	52.3
273.0×10	64.9
273.0×12.5	80.3
273.0×16	101
323.9×6	49.3
323.9×8	62.3
323.9×10	77.4
323.9×12.5	96
323.9×16.0	121
406.4×10	97.8
406.4×12.5	121
406.4×16.0	154
457.0×10	110
457.0×12.5	137
457.0×16	154
508.0×10	123
508.0×12.5	153
508.0×16.0	194

Size (mm)	
$20 \times 20 \times 2$	Kg / M
$25 \times 25 \times 2$	1.12
$25 \times 25 \times 2.5$	1.74
$25 \times 25 \times 3$	2.04
$30 \times 30 \times 2.5$	2.14
$30 \times 30 \times 3$	2.5 I
$40 \times 40 \times 2.5$	2.92
$40 \times 40 \times 3$	3.45
$40 \times 40 \times 4$	4.46
$50 \times 50 \times 2.5$	3.71
$50 \times 50 \times 3$	4.39
$50 \times 50 \times 4$	5.72
$50 \times 50 \times 5$	6.97
$60 \times 60 \times 3$	5.43
$60 \times 60 \times 4$	6.97
$60 \times 60 \times 5$	8.54
$60 \times 60 \times 6$	9.45
$70 \times 70 \times 3$	6.28
$70 \times 70 \times 3.5$	7.46
$70 \times 70 \times 5$	10.11
$80 \times 80 \times 3$	7.22
$80 \times 80 \times 3.6$	8.59
$80 \times 80 \times 5$	11.7
$80 \times 80 \times 6$	13.9
$80 \times 80 \times 6.3$	14.4
$90 \times 90 \times 3.6$	9.72
$90 \times 90 \times 5$	13.3
$90 \times 90 \times 6$	15.76
$100 \times 100 \times 3$	8.96
$100 \times 100 \times 4$	12
$100 \times 100 \times 5$	14.8
$100 \times 100 \times 6$	17.6
2	

Size (mm)	Kg / M
$100 \times 100 \times 6.3$	18.4
$100 \times 100 \times 8$	22.9
$100 \times 100 \times 10$	27.9
$120 \times 120 \times 5$	18
$120 \times 120 \times 6$	21.3
$120 \times 120 \times 6.3$	22.3
$120 \times 120 \times 8$	27.9
$120 \times 120 \times 10$	34.2
$150 \times 150 \times 5$	22.7
$150 \times 150 \times 6$	27
$150 \times 150 \times 6.3$	28.3
$150 \times 150 \times 8$	35.4
$150 \times 150 \times 10$	43.6
$180 \times 180 \times 5$	27.4
$180 \times 180 \times 6.3$	34.2
$180 \times 180 \times 8$	43
$180 \times 180 \times 10$	53
$180 \times 180 \times 12.5$	65.2
$200 \times 200 \times 6.3$	38.2
$200 \times 200 \times 8$	48
$200 \times 200 \times 10$	59.3
$200 \times 200 \times 12.5$	73
$250 \times 250 \times 6.3$	48.1
$250 \times 250 \times 8$	60.5
$250 \times 250 \times 10$	75
$250 \times 250 \times 12.5$	92.6
$300 \times 300 \times 8$	73.1
$300 \times 300 \times 10$	90.7
$300 \times 300 \times 12.5$	112

Size (mm)	Kg / M
$50 \times 25 \times 2.5$	2.72
$50 \times 25 \times 3$	3.22
50×30.25	2.92
$50 \times 30 \times 3$	3.45
$60 \times 40 \times 3$	4.39
$60 \times 40 \times 4$	5.72
$75 \times 50 \times 3$	6.02
$80 \times 40 \times 3$	5.34
$90 \times 50 \times 3$	6.28
$90 \times 50 \times 3.6$	7.46
$90 \times 50 \times 5$	10.11
$100 \times 50 \times 3$	6.75
$100 \times 50 \times 4$	8.86
$100 \times 50 \times 5$	10.9
$100 \times 50 \times 6$	12.9
$100 \times 60 \times 3.6$	8.59
$100 \times 60 \times 5$	11.7
$100 \times 60 \times 6$	13.9
$120 \times 60 \times 3.6$	9.72
$120 \times 60 \times 5$	13.3
$120 \times 60 \times 6$	15.7
$120 \times 60 \times 6.3$	164
$120 \times 80 \times 5$	14.8
$120 \times 80 \times 6$	17.6
$120 \times 80 \times 8$	22.9
$150 \times 100 \times 5$	18.7
$150 \times 100 \times 6$	22.3
$150 \times 100 \times 8$	29.1
$150 \times 100 \times 10$	35.7

Size (mm)	Kg / M
$160 \times 80 \times 5$	18
$160 \times 80 \times 6$	21.3
$160 \times 80 \times 8$	27.9
$200 \times 100 \times 5$	22.7
$200 \times 100 \times 6.3$	27
$200 \times 100 \times 8$	35.4
$200 \times 100 \times 10$	43.6
$250 \times 150 \times 5$	30.5
$250 \times 150 \times 6.3$	38.2
$250 \times 150 \times 8$	48
$250 \times 150 \times 10$	59.3
$250 \times 150 \times 12.5$	73
$300 \times 200 \times 6.3$	48.1
$300 \times 200 \times 8$	60.5
$400 \times 200 \times 8$	73.1
$400 \times 200 \times 10$	90.7

ERW steel box is so called because of the electronic resistance welding method employed in its manufacture, which uses a combination of heat and pressure resulting in a very consistent and strong forged weld seam.

SQUARE

Size (mm)	Weight Kg / M
$12.7 \times 12.7 \times \mathrm{I} .5$	0.53
$16 \times 16 \times \mathrm{I} .5$	0.67
$19 \times 19 \times 1.5$	0.84
$20 \times 20 \times \mathrm{I} .5$	0.87
$22 \times 22 \times \mathrm{I} .5$	0.98
$25 \times 25 \times 1.5$	1.15
$30 \times 30 \times \mathrm{I} .5$	1.40
$40 \times 40 \times 1.5$	1.81
$50 \times 50 \times \mathrm{I} .5$	2.28

RECTANGULAR

Size (mm)	Weight Kg/M
$40 \times 20 \times 1.5$	1.40
$50 \times 25 \times 1.5$	1.72

CIRCULAR

Size (mm)	Weight Kg / M
$12.7 \times \mathrm{I} .5$	0.45
$16 \times \mathrm{I} .5$	0.53
$19 \times \mathrm{I} .5$	0.65
$20 \times \mathrm{I} .5$	0.69
20×2.0	0.92
$22 \times \mathrm{I} .5$	0.78
$25.4 \times \mathrm{I} .5$	0.89
$31.75 \times \mathrm{I} .5$	1.20
31.75×2.0	I .82
$38 \times \mathrm{I} .5$	I .40
40×2.0	I .90
44.45×2.0	2.40
$50 \times \mathrm{I} .5$	I .80
$63.5 \times \mathrm{I} .5$	3.50

Available in Black or Galvanized, screwed and socketed or plain ended.

LIGHT

Nominal Bore (mm)	Outside Diameter (mm)	Thickness (mm)
8	13.2 to 13.6	1.80
10	16.7 to 17.1	1.80
15	21.0 to 2 I .4	2.00
20	26.4 to 26.9	2.35
25	33.2 to 33.8	2.65
32	41.9 to 42.5	2.65
40	47.8 to 48.4	2.90
50	59.6 to 60.2	2.90
65	75.4 to 76.0	3.25
80	87.9 to 88.7	3.25
100	113.0 to 113.8	3.65

MEDIUM

Nominal Bore (mm)	Outside Diameter (mm)	Thickness (mm)
8	13.3 to 13.9	2.35
10	16.8 to 17.4	2.35
15	21.1 to 21.7	2.65
20	26.6 to 27.2	2.65
25	33.4 to 34.2	3.25
32	40.1 to 42.9	3.25
40	48.0 to 48.8	3.25
50	59.8 to 60.8	3.65
65	75.4 to 76.6	3.65
80	88.1 to 89.5	4.05
100	II3.3 to II4.9	4.05
125	138.7 to I40.6	4.85
150	I64.I to I66.I	4.85

HEAVY

Nominal Bore (mm)	Outside Diameter (mm)	Thickness (mm)
8	13.3 to 13.9	2.90
10	16.8 to 17.4	2.90
15	21.1 to 21.7	3.25
20	26.6 to 27.2	3.25
25	33.4 to 34.2	4.05
32	40.1 to 42.9	4.05
40	48.0 to 48.8	4.05
50	59.8 to 60.8	4.50
65	75.4 to 76.6	4.50
80	88.1 to 89.5	4.55
100	II3.3 to II4.9	5.40
125	138.7 to I40.6	5.40
150	I64.I to 166.I	5.40

We carry a wide range of Tubeclamp fittings in stock. These are available in the following tube sizes: $\mathbf{2 7} \mathrm{mm}, 33 \mathrm{~mm}, 42 \mathrm{~mm}, 48 \mathrm{~mm} \& 60 \mathrm{~mm}$. However, the main sizes we stock are $33 \mathrm{~mm}, 42 \mathrm{~mm} \& 48 \mathrm{~mm}$.

TUBECLAMP

Tube (O/D)	Size
26.9 mm	A
33.7 mm	B
42.4 mm	C
48.3 mm	D
60.3 mm	E

The Interclamp Assist range has been especially designed to help compliance with the public access requirements of the Equality Act 2010 (formerly DDA) and Building Regulations Part M 2013. No other special fittings are required, which enables full integration with both new Interclamp systems and the refurbishment or upgrading of existing tubular structures to help meet the newer access specifications.

725 90deg ELBOW	728 INTERNAL CORNER BRACKET	729 EXTERNAL CORNER BRACKET	731 WALL FLANGE FOR USE WITH 725	745 WALL BRACKET 48mm TUBE	746 SADDLE WALL BRACKET	747 INTERNAL SWIVEL BRACKET SUITS 42 \& 48mm TUBE
748 INTERNAL SWIVEL SADDLE BRACKET	750 SWIVEL TEE	751 SWIVEL SADDLE BRACKET	764 INLINE ADJUSTABLE KNUCKLE	RUBBER O-RING	300 ADDITIONAL SETSCREW	303 SECURITY SETSCREW

PLEASE NOTE THAT THE DDA RANGE IS ONLY AVAILABLE TO SUIT 42mm O/D TUBE UNLESS OTHERWISE STATED. We also stock black plastic end caps to suit all tube sizes.

Please visit our trade counter, where our professional and friendly staff can serve you with your steel requirements and also offer help and advice on the following products.

POWER TOOLS

- Main agents for Hikoki, Dewalt, Bosch, Makita, Milwaukee, Metabo, Alfra and Panasonic
- From I 2 v drill drivers to demolition hammers, angle grinders to bench grinders or circular saws to bandsaws, we can supply whatever you need
- Power tool repairs and servicing

HAND TOOLS

- Stockists for Irwin, Stanley, Bahco, Wera, Faithfull, Draper, Knipex, Gedore, Bessey clamps and Roughneck
- Wide range of hand tools in stock Cutting, grinding, TCT blades, abrasive mop and sanding discs

SAFETY EQUIPMENT

- Safety footwear
- Face, eye and ear protection
- Gloves
- Hi-Vis coats, trousers and vests

- Waterproof clothing

WELDING EQUIPMENT

MIG • ARC • TIG • PLASMA • GAS

- Main agents for Jasic, Parweld, Autostar and SifWeld
- Large range of machines in stock
- Demonstrations upon request
- Wide range of automatic helmets in stock

- Full range of consumables
- Wide range of mig wire, welding rods and tig / brazing rods

PAINT

Stockists of:

- Red and grey zinc phosphate primer (oxide)
- Galvanizing paint
- Black gloss
- Thinners
- Aluminium paint
- Paint brushes, rollers and refills
- Bags of wiping rags

FIXINGS

We can supply a wide range of fixings to suit all your needs

- High tensile bolts, set screws, nuts and washers
- Carriage bolts

- Coach screws
- Thunder bolts
- Sleeve anchors
- Threaded bar

- Hook bolts
- Gate fittings
- Roofing screws
- Pop rivets and rivet guns
- Chemical anchor resin
- Sealants
- Adhesives

We offer a range of industrial gases without the need to enter into a contract. Just pay an initial VAT free deposit on the cylinder and gas, then pay for refills of the gas as you use it.

NO ANNUAL FEE, JUST PAY FOR WHAT YOU USE.
If you no longer need the gas, return the cylinder for a full refund of your deposit. IT'S AS SIMPLE AS THAT!

We are also an agent and stockist of Propane for Calor Gas.

GAS TYPES AND CYLINDER SIZES:

- 5\% Argon/CO2 mix. IOltr, 20ltr \& 50ltr
- I2\% Argon/CO2 mix. IOltr, 20ltr \& 50ltr
- 20\% Argon/CO2 mix. IOltr, 20ltr \& 50ltr
- Pure Argon IOltr, 201tr \& 50ltr
- Oxygen IOltr, 201tr \& 50ltr
- Oxygen free Nitrogen. 2ltr, IOltr \& 201tr
- CO2 gas offtake $1.5 \mathrm{~kg}, 3.15 \mathrm{~kg} \& 6.35 \mathrm{~kg}$
- Propylene 2ltr, IOltr \& 201tr
- CO2/Nitrogen 30/70 mix 2ltr \& IOltr
- CO2/Nitrogen 60/40 mix IOltr
- Helium balloon gas 91tr \& 201tr We also carry Helium balloon gas inflators in stock.
- Propane $6 \mathrm{~kg}, \mathrm{I} 3 \mathrm{~kg}, 19 \mathrm{~kg} \& 47 \mathrm{~kg}$
- Automotive Propane I8kg

CO2/ARGON MIX 5

93\% Argon, 2\% Oxygen, 5\% Carbon Dioxide
MIG welding mild steel up to 6 mm thick

CO2/ARGON MIX 12

86\% Argon, 2\% Oxygen, I 2\% Carbon Dioxide
MIG welding mild steel 4 - 12 mm thick

CO2/ARGON MIX 20

78\% Argon, 2\% Oxygen, 20\% Carbon Dioxide
MIGWelding mild steel Material thickness between 6 mm - $14 \mathrm{~mm}+$

ARGON

99.9\% Argon

Material thickness $1 \mathrm{~mm}-12 \mathrm{~mm}$. Used for thin and medium sections.
Good arc control, used with or without pulse.

OXYGEN

Widely used with a fuel gas for cutting, welding, brazing and soldering.
Also fish keeping and farming.

OXYGEN FREE NITROGEN

For use in air conditioning, racing tyres, aircraft tyres, food preservation and paint ball.

CARBON DIOXIDE GAS OFF TAKE

For use in MIG welding, hydroponics \& plant horticulture, aquatic plants.

PROPYLENE

For use in heating, cutting, welding and brazing.

CO2/NITROGEN 30/70 MIX

For use with bitters and Guinness.

CO2/NITROGEN 60/40 MIX

For use with lagers and ciders.

STEEL ROOFING

- Steel profiled sheet with Polyester or Plastisol finish.Available in 0.5 mm or 0.7 mm
- Any length to order
- Anti-condensation finish available
- Composite Panel sheets made to order
- GRPTranslucents
- Fibre Cement
- Flashings and gutters
- Steel Purlins

There are over 300 different profiles available, to identify an existing profile for matching we need the following information:

COLOURCOAT ${ }^{\circledR}$ LG
 PRE FINISHED STEEL FOR ROOF ANDWALL CLADDING

NOTES:

- The standard colour references shown above are the nearest equivalents.
- The printed colours shown for Colourcoat ${ }^{\circledR}$ LG are for guidance only. For a true representation of colour and effect, please obtain colour samples.
- If an exact match between components and Colourcoat ${ }^{\circledR}$ LG is essential, this is best achieved by matching to the actual cladding delivered to site.

ONDULINE LIGHTWEIGHT CORRUGATED BITUMEN ROOFING SHEETS

Onduline Roofing is an attractive, lightweight but extremely tough corrugated cladding which is manufactured from bitumen-saturated organic fibres.

They are stocked in 2 metre lengths with an overall width of 950 mm , finished in black.

Suitable for a wide range of applications in agricultural, industrial, domestic and environmental projects.

SYSTEM BENEFITS

- Easy to cut, shape and fix
- I5 year insurance-backed water proofing guarantee*
- Excellent colour retention properties
- Withstands wind speeds of up to 120 mph
- European CE Declaration of Conformity
- High insulation and sound absorbency performance
- Does not rust, rot or become brittle

CORRUGATED SHEETS

We stock galvanized corrugated sheets in $6^{\prime}, 7^{\prime}, 8^{\prime}, 9^{\prime} 10^{\prime}$ and 12^{\prime} lengths. Sheets cover 600mm and are 8/3 corrugations.

We also keep in stock 6', 8' and I0' HD clear corrugated sheets to match the above profile and 6" $\times 6$ " roll top ridges in 6 ' lengths with a range of fixings to suit.

We stock a wide range of roofing screws or Tex fixings. These are used secure steel roof sheets and flashings to either timber, steel or even concrete.
Tex fixings are designed to fix sheets in the "valley" section of the profile.

TEX FOR ZED PURLIN

- 8 mm Hex Head
- No. 3 drill tip for self-drilling in heavy gauge steel up to 3.2 mm
- Complete with 19 mm EPDM rubber washer

Available in the following lengths: $25 \mathrm{~mm}, 65 \mathrm{~mm}, 70 \mathrm{~mm}, 85 \mathrm{~mm}, 105 \mathrm{~mm}, 115 \mathrm{~mm}$ \& 135 mm

TEX STITCHER

Used for joining metal roofing sheet panels together

- Self-Drilling in Roofing Sheet Steel up to 2.5 mm
- 8 mm Hex Head
- Smaller No. I drill tip can drill through two sheets then engage the
 threads to clamp the sheets together under the head

TEX FOR THICK STEEL OR HEAVY SECTION

- 8 mm Hex Head
- No. 5 drill tip for self-drilling in heavy gauge steel up to 12.5 mm
- Complete with 19 mm EPDM rubber washer

Available in the following lengths: $38 \mathrm{~mm}, 55 \mathrm{~mm}, 76 \mathrm{~mm}, 85 \mathrm{~mm}, 105 \mathrm{~mm}$ \& 125 mm

TEX FOR TIMBER

- 8 mm Hex Head
- No pre-drilling is required and the self-drilling TI7 Gash Point on screws makes for a rapid installation
- Complete with 19 mm EPDM rubber washer
- Suitable for a steel thickness of $0.5-1.2 \mathrm{~mm}$

Available in the following lengths: $32 \mathrm{~mm}, 45 \mathrm{~mm}, 60 \mathrm{~mm}, 80 \mathrm{~mm}, 100 \mathrm{~mm}$ \& 125 mm

COUNTERSUNK TEX FOR FIXING TIMBER TO STEEL

- Screw fitted with breakaway wings that create a clearance hole to protect thread from engaging timber when drilling through
- Breakaway wings will ream a hole then break-off when they contact the metal surface to be drilled.Thread will then engage with metal
Available in the following lengths: $38 \mathrm{~mm}, 50 \mathrm{~mm}, 60 \mathrm{~mm}, 85 \mathrm{~mm}$ \& 105 mm
We also carry plastic caps in a wide range of colours to fit our Tex screws.

PLEASE FEEL FREE TO CONTACT US IF YOU NEED ANY TECHNICAL ADVICE.

Head Office

Ash House
Blythe Way
Yalberton Industrial Estate
Paignton
Devon
TQ4 7QP

Tel: 01803664020
Email: sales@austenknapman.co.uk

www.austenknapman.co.uk

Saltash Branch
Birch House
Forge Lane
Moorlands Trading Estate
Saltash
Cornwall
PLI 2 6LX
Tel: 01752847799
Email: saltashsales@austenknapman.com

